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When a liquid wets a solid wall, the extended meniscus may be divided into three regions: a non-evap-
orating region where liquid is adsorbed on the wall; a thin-film region where effects of long-range molec-
ular forces (disjoining pressure) are felt; and an intrinsic meniscus region where capillary forces
dominate. Among these, the thin-film region is characterized by high heat transfer rates because its small
thickness results in a very low conduction resistance. In this work, a simplified model based on the aug-
mented Young–Laplace equation is developed and an analytical solution is obtained for the total heat
transfer in the thin-film region. The results are consistent with previously published numerical solutions.
The present work is valid for a much wider range of fluid thermal conductivity than a previous analytical
solution by Schonberg and Wayner, which is only applicable for fluids with very low conductivity. Based
on the analytical expression developed, the thin-film heat transfer is found to increase with increasing
disjoining pressure, and to decrease with increasing liquid viscosity.

� 2008 Elsevier Ltd. All rights reserved.
1. Introduction

When a liquid wets a solid wall in an ambient of air, the disjoin-
ing pressure has been defined as being equal to the difference be-
tween the pressure applied by the liquid film on the air and solid
phases by which it is confined and the pressure in the bulk of
the liquid film in a state of isothermal and isobaric equilibrium
[1]. When the liquid film is thin enough, the liquid–gas and
liquid–solid interfaces interfere with each other, giving rise to
disjoining pressure. According to this definition, as a first approxi-
mation, the disjoining pressure is equal to the sum of contributions
from the following components: a molecular component, depen-
dent on the effect of molecular or dispersion forces; an ionic–elec-
trostatic component, dependent on the overlapping of diffuse ionic
atmospheres; an adsorption component, dependent on the over-
lapping of diffuse atmospheres of adsorbed molecules; a structural
component; and finally, an electronic component, dependent on
the overlapping of near-surface layers of liquid metals (like mer-
cury), in which the wave functions of electrons are different from
the bulk [1].

It has been decades since the concept of disjoining pressure was
introduced in the science of colloids and surface phenomena. In the
field of heat transfer, it has been studied because of its importance
in the thin-film region. Deryagin et al. [2] demonstrated liquid
ll rights reserved.
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pressure reduction in the thin-film region due to disjoining pres-
sure. Potash and Wayner [3] concluded that the variation of
disjoining pressure along the meniscus provides the necessary
pressure gradient for liquid supply into the thin-film region.
Wayner et al. [4] discussed the effects of disjoining pressure on
liquid supply as well as its role in suppressing evaporation. As an
extension of [4], Schonberg and Wayner [5] investigated the thin
film by ignoring capillary pressure and developed an analytical
solution for the maximum heat evaporated from the thin film;
their analysis, however, was applicable only to insulating fluids.

Hallinan et al. [6] and DasGupta et al. [7] developed a fourth-or-
der ordinary differential equation for solving the augmented
Young–Laplace equation and obtained the thickness profile of the
extended meniscus. The influence of superheat on the thin-film
profile was discussed. Park et al. [8] proposed a mathematical
model which included the vapor region and a slip boundary condi-
tion. It was concluded that the pressure gradient in the vapor
region significantly affected the thin-film profile. Wee et al. [9]
discussed evaporation in the thin-film region of a binary mixture.
Recently, thin-film evaporation in a microchannel was studied
[10]. The thin film was maintained throughout at a temperature
below the saturation temperature corresponding to the imposed
pressure, and the gas domain was assumed to consist of a mixture
of air and vapor. The vapor diffusion in the gas domain was calcu-
lated to obtain the evaporation flux, and heat transfer results in the
form of a local Nusselt number were reported. In the authors’ pre-
vious work [11], a superheated meniscus was investigated using a
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Nomenclature

A dispersion constant (J)
H height of channel (m)
hfg latent heat of evaporation (J/kg)
hlv evaporative heat transfer coefficient (W/m2K)
kl liquid conductivity (W/mK)
m0 mass flow rate (kg/ms)
m00 interface net mass flux (kg/m2s)
m00id ideal interface net mass flux (kg/m2s)
M00 dimensionless interface mass flux
M molecular weight (kg/mol)
R universal gas constant (J/mol K)
Pc capillary pressure
Pd disjoining pressure (N/m2)
Pl liquid pressure (N/m2)
DPl change of liquid pressure (N/m2)
Psat saturation pressure (N/m2)
Pv vapor pressure (N/m2)
Pv_equ equilibrium pressure (N/m2)
q integrated heat transfer rate (W/m)
qt total heat transfer rate (W/m)
R meniscus radius (m)
R* asymptotic intrinsic meniscus radius (m)
T temperature (K)
u velocity along x-axis (m/s)
V molar volume (m3/mol)
x x-coordinate (m)

x0 reference position defined in Eq. (19)
y y-coordinate (m)

Greek symbols
d liquid layer thickness (m)
d0 non-evaporating region thickness (m)
g dimensionless thickness
m kinematic viscosity (m2/s)
l dynamic viscosity (Ns/m2)
ql liquid density (kg/m3)
qv vapor density (kg/m3)
n dimensionless position
k dimensionless group defined in Eq. (20)
r surface tension coefficient (N/m)
r̂ accommodation coefficient

Subscripts
c condensation
e evaporation
l liquid
lv liquid–vapor interface
sat saturated
sum sum
t thin-film region
v vapor
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kinetic theory-based expression for mass transport across a liquid–
vapor interface [12]; the boundary conditions for the film profile
were discussed in detail, and the thin-film and the intrinsic-menis-
cus regions were distinguished based on the disjoining-pressure
variation along the meniscus.

In the present work, an analytical solution is derived to more
easily evaluate the total heat transfer in the entire thin-film re-
gion. The starting point is the model described in [11], referred
to in this paper as the ‘‘full model,” and its numerical solution.
The full model is then simplified, making it possible to derive
an analytical solution which follows. The analytical solution is
compared to the numerical solution of the full model [11] and
also to Schonberg and Wayner’s numerical and analytical solu-
tions [5].
x

Fig. 1. Schematic diagram and coordinate system for an evaporating thin film in a
channel.
2. Full model and numerical solution

The equations governing the thin-film profile have been exten-
sively discussed in the literature [3–10] and are reviewed in the
authors’ previous work [11]. The problem under consideration is
illustrated in Fig. 1. The pressure difference between vapor and li-
quid at the liquid–vapor interface is due both to the capillary and
disjoining pressures, and is expressed using the augmented
Young–Laplace equation [4]:

Pv ¼ Pl þ Pc þ Pd ð1Þ

The disjoining pressure for a non-polar liquid is expressed as [4,5]

Pd ¼ A=d3 ð2Þ

where A is the dispersion constant and d the film thickness. It is
noted that in [5], the equation is Pd = �A/d3; therefore, the sign of
A in Eq. (2) is opposite to that used in [4,5]. The capillary pressure
is the product of interfacial curvature K and surface tension
coefficient r
Pc ¼ rK; K ¼ d00ð1þ d02Þ�1:5 ð3Þ

where d0 and d00 are, respectively, the first and second derivatives of
thickness with respect to length x.

Combining Eqs. (1)–(3) and differentiating with respect to x, the
following third-order differential equation is obtained for the thin-
film profile d(x)

d000 � 3d0d002

1þ d02
þ 1

r
dPl

dx
� 3A

d4 d0
� �

1þ d02
� �1:5 ¼ 0 ð4Þ

assuming uniform Pv along the meniscus. In view of the very low
Reynolds number and the large length-to-height ratio of the thin
film, lubrication theory is employed to obtain the pressure gradi-
ent in Eq. (4). A no-slip boundary condition at the wall and a no-



Table 1
Properties of evaporating liquid [5] and operating conditions

Liquid Octane

A (J) 3.18 � 10�21

Pv (Pa) 1.5828 � 104

ql (kg/m3) 661.2
kl (W/mK) 0.11
hfg (kJ/kg) 339.8
Tw (K) 344
Tv (K) 343
r̂ 1
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shear boundary condition at the liquid–vapor interface are im-
posed. Under these assumptions, the liquid pressure gradient
dPl/dx may be related to the mass flow rate m0(x). At steady state,
the mass flow rate m0(x) at a position x is equal to the integral of
the net evaporative mass flux from the beginning of the film to
the local position. The liquid pressure gradient may then be ob-
tained as

dPl

dx
¼ 3m

d3

Z x

�1
m00 dx ð5Þ

Substituting the pressure gradient into Eq. (4) and further differen-
tiating with respect to x, a fourth-order ordinary differential equa-
tion is obtained for the thin-film profile

d
dx

rd000

1þ d02
� �1:5 �

3rd0d002

1þ d02
� �2:5 �

3Ad0

d4

2
4

3
5 d3

3m

0
@

1
A ¼ �m00 ð6Þ

In the authors’ previous work [11], Eq. (6) was solved numerically.
The particular system considered was the evaporation of a film of
octane on a silicon substrate. The vapor domain was assumed to
be saturated at Tv and Pv. The relevant properties are listed in Table
1. The dispersion constant A was assumed to be �3.18 � 10�21 J
based on the data in [13], which considered octane on silicon with
air at room temperature. The accommodation coefficient r̂ for the
evaporation calculation was assumed to be unity for octane, a
non-polar liquid.

Fig. 2 shows the variation of the different components of
pressure along the film length when the superheat is 1 K. The
thin-film region is identified as ending at a location when the
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Fig. 2. Variation of the different pressure components along the length of the
meniscus [11] (superheat 1 K, R* = 2500 nm).
disjoining pressure drops to 1/2000th of Pd0, which is the dis-
joining pressure in the non-evaporating region [11]. Based on
this definition, it is seen in Fig. 2 that the length of the thin-film
region is approximately 150 nm. The total heat transfer qt from
this thin-film region was calculated to be 0.139 W per unit
depth. It was also found that the length of the thin-film region
and qt were insensitive to channel size when it was larger than
a few micrometers. Details of the numerical solution are avail-
able in [11].

3. Analytical solution for total heat transfer from thin-film
region

To derive an analytical solution for qt, we will first simplify the
governing equations. Two simplifications are made based on re-
sults of the full model in Section 2:

1. By definition, the thin-film region is the region supported by
disjoining pressure. Disjoining pressure drops from the non-
evaporating region to the intrinsic meniscus, which allows
liquid to flow from the bulk into the film to compensate for
evaporation. It is supposed that qt can be determined mostly
from the drop in disjoining pressure. The governing equation
may then be simplified by ignoring capillary pressure and set-
ting r = 0 on the left side of Eq. (6)

d
dx
� A

dm
d0

� �
¼ �m00 ð7Þ

2. In [11] the evaporation mass flux m00 was calculated using the
kinetic theory-based expression developed by Schrage [12]. In
the present work, m00 is calculated using a simplified evapora-
tion model proposed by Wayner et al. [4]

m00 ¼ aðT lv � TvÞ � bðPd þ PcÞ ð8aÞ

where

a ¼ C
M

2pRT lv

 !1=2
PvMhfg

RTvT lv
; b ¼ C

M

2pRT lv

 !1=2
V lPv

RT lv
ð8bÞ

Eq. (8) is obtained from Schrage’s original expression by using an
extended Clapeyron equation [4] and the approximations Tlv � Tv

and Pv_equ � Pv. The second group on the right side of Eq. (8a) rep-
resents the suppression of evaporation by disjoining and capillary
pressure. The suppression is significant only within the thinnest
part of the thin-film region, and neglecting it does not significantly
influence qt. Assuming the suppression component to be negligible,
we may write
m00 ¼ aðT lv � TvÞ ð9Þ

The evaporation heat transfer is q00 = m00hfg and the evaporative heat
transfer coefficient is therefore

hlv ¼ ahfg ð10Þ

Now, the conduction heat transferred through the liquid film
should equal the evaporative heat flux. Using this, an expression
for m00 in terms of the wall temperature Tw can finally be obtained
as

m00 ¼ 1
hfg

hlvklðTw � TvÞ
kl þ hlvd

ð11Þ

Combining Eqs. (11) and (7), the simplified governing equation for
the thin-film profile may be rewritten as

d
dx

A
dm

dd
dx

� �� �
¼ 1

hfg

hlvklðTw � TvÞ
kl þ hlvd

ð12Þ
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A non-dimensionalization similar to that in Schonberg and
Wayner [5] may be carried out. A dimensionless thickness is first
defined as

g ¼ d
d0

ð13Þ

in which d0 is the thickness of the non-evaporating region. Setting
m00 = 0 in Eq. (8a) gives

d0 ¼
b
a

A
Tw � Tv

� �1=3

ð14Þ

A dimensionless position

n ¼ x
x0

ð15Þ

and a dimensionless evaporative mass flux

M00 ¼ m00

m00id
ð16Þ

are also defined in which m00id is the ideal flux in the absence of a
pressure effect, i.e., with b = 0 in Eq. (8a)

m00id ¼ aðTw � TvÞ ð17Þ

With these definitions, the governing equation (12) becomes

A
x2

0mm00id

d
dn

1
g

dg
dn

� �� �
¼ 1

1þ ahfgd0g
kl

ð18Þ

Defining

x0 �
ffiffiffiffiffiffiffiffiffiffi

A
mm00id

s
ð19Þ

and a dimensionless group

k � ahfgd0g
kl

ð20Þ

the non-dimensionalized governing equation takes the form

d
dn

1
g

dg
dn

� �� �
¼ 1

1þ kg
ð21Þ

Comparing this equation to the governing equation derived in
Schonberg and Wayner [5]

d
dn

1
g

dg
dn

� �� �
¼ 1

1þ kg
1� 1

g3

� �
ð22Þ

it is seen that the last term on the right is neglected, i.e.

1� 1
g3 � 1 ð23Þ

This approximation has its origin in the neglect of the suppression
of evaporation by disjoining and capillary pressure, as explained
with Eq. (9). When the film thickness is very close to the non-evap-
orating thickness d0, the disjoining pressure is very large and the
evaporation is suppressed strongly. Under such conditions, d/
d0 � 1 and (1 � 1/g3) � 0, and the approximation is not appropriate.
However, it is noted that 1/g3 decreases towards zero very quickly
as the thickness grows, for example, (1 � 1/g3) = 0.962 when g = 3,
and is equal to 0.992 when g = 5. Since the goal of the present work
is to obtain a solution for the total heat transfer in the thin-film re-
gion, the heat transfer from the part of the film very close to the
non-evaporating region may be neglected compared to the total
heat transfer qt. As seen in Section 4.2, this approximation induces
negligible error in the qt calculation.

Solving the governing equation (12), the slope of the film profile
is obtained as
dd
dx
¼ d

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2C1 ln

d
d0

1þ C2d0

1þ C2d

� �s
with C1 ¼

m
A

hlvðTw � TvÞ
hfg

C2

¼ hlv

kl
ð24Þ

On the other hand, the mass flow rate through the cross-section at a
position x, m0(x), may be obtained from lubrication theory as [5]

m0ðxÞ ¼ A
dm

dd
dx

� �
ð25Þ

As illustrated in Fig. 1, it is equal to the integral of the evaporative
mass flux from the beginning of the film to position x. Therefore, the
total heat dissipated from the beginning of the film to position x is

qðxÞ ¼ m0ðxÞhfg ð26Þ

Combining Eqs. (24) and (25) with Eq. (26) yields

q ¼ m0hfg ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2AhfghlvðTw � TvÞ

m
ln

d
d0

1þ C2d0

1þ C2d

� �s
ð27Þ

To obtain the total heat transfer from the entire thin-film region, the
thickness d is set to infinity in the above equation, yielding

qt ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2AhfghlvðTw � TvÞ

m
ln

kl

hlvd0
þ 1

� �s
ð28Þ

It can be seen from this expression that thin-film heat transfer
increases with disjoining pressure and decreases with liquid vis-
cosity. Disjoining pressure supports the thin film, and as pointed
out in the literature [3–11], its reduction along the film length al-
lows liquid to flow from the bulk into the film to compensate for
evaporation. Higher liquid viscosity creates greater resistance to
liquid flow and reduces this compensatory flow, thereby reducing
qt.

4. Results and discussion

4.1. Comparison of analytical solution and full model

A comparison between the analytical solution, i.e., Eq. (28), and
the numerical solution of the full model in [11] is shown in Fig. 3. It
is seen from Fig. 3a that the analytical solution agrees well with the
full model. Only when the wall superheat is very small (<0.1 K)
does the analytical solution overestimate qt, as seen in Fig. 3b. It
may be noted that the simplified evaporation equations, Eqs. (9)
and (10), neglect the suppression of evaporation by Pd and Pc, as
described in Section 3. The suppression is more significant for low-
er wall superheat or lower Tlv. If the suppression is taken into ac-
count, hlv should be

hlv ¼ hfg a� bðPd þ PcÞ
1

ðT lv � TvÞ

	 

ð29Þ

It is seen that a smaller Tlv � Tv amplifies the second term in the
brackets and depresses hlv.

The error engendered by neglecting the suppression can be re-
duced by the following improvement to the model. Along the
meniscus, Pd + Pc decreases monotonically to P�c ¼ r=R�, which is
the capillary pressure in the intrinsic meniscus. That is, the mini-
mum value of (Pd + Pc) is P�c. Using P�c in Eq. (29), an improved hlv

may be obtained as

hlv ¼ hfg a� b
r
R�

1
ðTw � TvÞ

	 

ð30Þ

With the suppression component added to the analytical solution, it
is seen in Fig. 3b that the improved hlv can effectively reduce the
overestimation of qt at low superheats.
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We note here that although the analytical solution in Eq. (28) is
found to be appropriate for computing the total heat transfer from
the thin-film region, this does not imply that the capillary pressure
may be neglected in calculating the film profile. In fact, capillary
pressure plays an important role in shaping the film profile, includ-
ing in the thin-film region [11].

4.2. Comparison to numerical and analytical solutions of Schonberg
and Wayner [5]

By neglecting capillary pressure, Schonberg and Wayner [5] de-
rived Eq. (22) for the thin-film profile and solved it for qt. Although
both numerical and analytical solutions were obtained for Eq. (22),
the analytical solution is valid only when the liquid conductivity is
very small, i.e., for an insulating liquid.

Fig. 3 shows a comparison of the numerical solution of [5] with
the analytical solution (without the suppression component)
developed in the present work. Very good agreement between
the two sets of results is observed. The values from the present
analytical solution are a little higher than the numerical solution,
which is a result of the lack of the inclusion of suppression of evap-
oration in the present model.

For the extreme case of large k = ahfgd0/kl, Schonberg and
Wayner [5] also obtained the following analytical solution:

qt ¼
ffiffiffi
3
2

r
A1=3 hfgkl

m

� �1=2 a
b

� �1=6
ðTw � TvÞ2=3 ð31Þ

As shown in Fig. 4, three curves are plotted: the analytical solution
from the present work, the analytical solution of [5], and the
numerical solution from the full model [11]. It is apparent that
the analytical solution in the present work is consistent with the
full model, while Schonberg and Wayner’s analytical solution
deviates significantly. The reason is that the analytical solution in
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Eq. (31) was derived under the condition that the term k = ahfgd0/kl

is large, as addressed in [5]. Since d0 is of the order of nanometers
and ahfg is of the order of 106 W/m2K, ahfgd0/kl > 1 implies conduc-
tivity kl < 10�3 W/mK. For octane, the value of kl is equal to 0.11 W/
mK, and not small enough for Eq. (31) to apply.

If the liquid conductivity is very small, for example,
kl = 1.1 � 10�3 W/mK, Eq. (31) would produce much less error,
and the two analytical solutions agree more closely, as seen in
Fig. 5.

5. Conclusions

A simplified model neglecting capillary pressure is developed
for the thin-film region of an evaporating meniscus, and an ana-
lytical solution is obtained for the total heat transfer in the thin-
film region. The results agree well with the numerical solution
for the full model described in [11] in which the thin-film region
is identified as ending at a location when the disjoining pressure
drops to 1/2000th of Pd0, the disjoining pressure in the non-
evaporating region. The results also agree with the analytical
solution provided by Schonberg and Wayner [5] when the fluid
conductivity is very small, since their solution is applicable only
to insulating liquids. Thin-film heat transfer is seen to increase
with an increase in disjoining pressure, and decrease with
increasing liquid viscosity.

Acknowledgements

The authors acknowledge financial support for this work from
members of the Cooling Technologies Research Center, a National
Science Foundation Industry/University Cooperative Research Cen-
ter at Purdue University.

References

[1] B.V. Derjaguin, Modern state of the investigation of long-range surface forces,
Langmuir 3 (5) (1987) 601–606.

[2] B.V. Deryagin, S.V. Nerpin, N.V. Churayev, Effect of film heat transfer
upon evaporation of liquids from capillaries, Bull. R. I. L. E. M. 29
(1965) 93–98.

[3] M. Potash Jr., P.C. Wayner Jr., Evaporation from a two-dimensional extended
meniscus, Int. J. Heat Mass Transfer 15 (1972) 1851–1863.

[4] P.C. Wayner Jr., Y.K. Kao, L.V. LaCroix, The interline heat transfer
coefficient of an evaporating wetting film, Int. J. Heat Mass Transfer 19
(1976) 487–492.

[5] J.A. Schonberg, P.C. Wayner Jr., Analytical solution for the integral contact line
evaporative heat sink, J. Thermophys. Heat Transfer 6 (1992) 128–134.

[6] K.P. Hallinan, H.C. Chebaro, S.J. Kim, W.S. Chang, Evaporation from an extended
meniscus for nonisothermal interfacial conditions, J. Thermophys. Heat
Transfer 8 (1994) 709–716.

[7] S. DasGupta, J.A. Schonberg, P.C. Wayner Jr., Investigation of an evaporating
extended meniscus based on the augmented Young–Laplace Equation, J. Heat
Transfer 115 (1993) 201–208.

[8] K. Park, K. Noh, K. Lee, Transport phenomena in the thin-film region of a micro-
channel, Int. J. Heat Mass Transfer 46 (2003) 2381–2388.

[9] S. Wee, K.D. Kihm, D.M. Pratt, J.S. Allen, Microscale heat and mass transport of
evaporating thin film of binary mixture, J. Thermophys. Heat Transfer 20
(2006) 320–327.

[10] C. Chakraborty, S.K. Som, Heat transfer in an evaporating thin liquid film
moving slowly along the walls of an inclined microchannel, Int. J. Heat Mass
Transfer 48 (2005) 2801–2805.

[11] H. Wang, S.V. Garimella, J.Y. Murthy, Characteristics of an evaporating thin film
in a microchannel, Int. J. Heat Mass Transfer 50 (2007) 163–172.

[12] R.W. Schrage, A Theoretical Study of Interface Mass Transfer, Columbia
University Press, New York, 1953.

[13] J.G. Truong, P.C. Wayner Jr., Effect of capillary and van der Waals dispersion
force on the equilibrium profile of a wetting fluid: theory and experiment, J.
Chem. Phys. 87 (1987) 4180–4188.


	An analytical solution for the total heat transfer in the thin-film region of an evaporating meniscus
	Introduction
	Full model and numerical solution
	Analytical solution for total heat transfer from thin-film region
	Results and discussion
	Comparison of analytical solution and full model
	Comparison to numerical and analytical solutions of Schonberg and Wayner [5]

	Conclusions
	Acknowledgements
	References


